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Transient analysis of free-electron lasers with discrete radiators

S. Krinsky
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973

~Received 16 July 1998!

In the linear regime before saturation, we solve the one-dimensional, classical free-electron laser equations,
maintaining the longitudinal discreteness of the electrons throughout the analysis. We then take the limit in
which the beam of discrete electrons is approximated by a continuum fluid. In the continuum limit, we recover
the Green function used by Wang and Yu in their treatment of self-amplified spontaneous emission~SASE!.
For a bunched electron beam, we discuss both incoherent and coherent SASE. We also discuss the field
radiated from a bunch whose length is short compared to the radiation wavelength.@S1063-651X~99!11601-5#

PACS number~s!: 41.60.Cr
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I. INTRODUCTION

Single pass free-electron lasers~FELs! have great poten
tial as sources of high peak power radiation at short wa
lengths, from the vacuum ultraviolet down to hard x ra
High gain FELs are based upon a collective instability a
ing from the resonant interaction between the electron be
and the radiation field. Most theoretical treatments of th
devices utilize either the coupled Vlasov-Maxwell equatio
@1–6#, or else individual particle formulations@7–11# which
invoke a local average of the electron current over the e
tron coordinates. In both cases, the electron beam is app
mated by a continuum fluid.

In the mathematical analysis of FELs, the difficulty
treating the discreteness of the electrons is due tod function
singularities in the electron current, and corresponding
continuities in the radiated electric field at the positions
the electrons. For self-amplified spontaneous emiss
~SASE!, the start-up from shot noise in the electron be
depends critically upon the discreteness of the electro
Theoretical analyses of SASE@2,3,4,5,11# have incorporated
the discreteness of the electrons into the initial conditio
but the electron gain medium has been approximated b
continuum fluid. In the approach developed by Wang and
@2#, this is reflected in the fact that the Green function e
ployed is that corresponding to a continuum electron be
In the present paper we take a step aimed at elucidating
continuum approximation. We consider the linear regime
fore saturation, and solve the classical FEL equations wi
the one-dimensional approximation~in which the depen-
dence of quantities on transverse coordinates is neglec!,
maintaining the longitudinal discreteness of the electr
throughout the analysis.

We utilize an individual particle formulation of the FE
equations introduced by Colson, Gallardo, and Bosco@8#.
However, we do not invoke a local averaging approximat
over longitudinal coordinates. Linearizing the on
dimensional FEL equations, we derive the third-order par
differential equation~4.6! determining the slowly varying
envelope of the radiated electric field. An explicit solution
derived, corresponding to an arbitrary set of initial longit
dinal coordinates of the electrons. With the solution in ha
Eqs. ~4.28!–~4.30!, we take the limit in which the beam o
discrete electrons goes over to a continuum fluid, and
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recover the results obtained in earlier work@2#.
In Sec. II we review the derivation of the FEL equation

In Sec. III we discuss the one-dimensional approximati
Within this framework, energy conservation is derived a
an analysis of both incoherent and coherent spontaneou
diation is presented. In Sec. IV the one-dimensional eq
tions are linearized, and the partial differential equati
~4.6!, determining the slowly varying envelopeE of the elec-
tric field, is derived. This equation is then solved preserv
the longitudinal discreteness of the electrons. In Sec. V
take the limit in which the electron beam approaches a c
tinuum fluid, and we discuss some useful representation
the continuum Green function. In Sec. VI we consider inc
herent and coherent self-amplified spontaneous radiation
the case of a bunched electron beam, whose length is on
order of the slippage in a few gain lengths.

Becaused functions appear in the envelope equati
~4.6!, the envelope functionE is discontinuous at the posi
tions of the electrons. Therefore it is necessary to specify
value ofE at the position of each electron. In Appendix A w
use the one-dimensional FEL equations to show that
value ofE at the electron position is equal to the average
the values immediately in front of and behind it. Utilizin
this condition, the envelope equation becomes well defi
and we can solve it.

In Sec. IV we neglect theE* term in the envelope equa
tion. This is the usual procedure for determining the dom
nant coherent growth of the radiation field. In Appendix
we extend the analysis of Sec. IV to include the effects of
E* term. TheE* term is important when the electron bunc
length is comparable to or shorter than the radiation wa
length.

In Sec. VII we discuss the field radiated from a bun
whose length is much shorter than the radiation wavelen
The analysis is based on results obtained in Appendix B.
conclusions are given in Sec. VIII.

II. FEL EQUATIONS

We consider a highly relativistic electron beam moving
the z direction through a periodic left-handed circularly p
larized helical wiggler, whose vector potential is given by

AW w5Aw~ ê2eikwz1c.c.!/&, ~2.1!
1171 ©1999 The American Physical Society
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1172 PRE 59S. KRINSKY
whereê65(ê11 i ê2)/&, andê1 and ê2 are orthogonal unit
vectors transverse toẑ. We ignore focusing in the wiggler
and assume the electron beam to have no angular spread
transverse electron velocity is approximated by

yW'>2eAW w /mg, ~2.2!

and the longitudinal velocity by

y i>cS 12
11K2

2g2 D , ~2.3!

whereK5eAw /mc is the wiggler magnetic strength param
eter.

The electron beam is assumed to be initially monoen
getic with all electrons having energyg0 and longitudinal
velocity y i(g0)5y0 . The spontaneous radiation emitted
the electrons in the forward direction is left circularly pola
ized with wave numberk0 and frequencyv05k0c,

k0

kw
5

y0

c2y0
>

2g0
2

11K2 ~2.4!

and

k01kw5
v0

y0
5

vw

c2y0
, ~2.5!

wherevw5kwc.
We label the discrete pointlike electrons by the indexj

51, . . . ,N, whereN is the total number of electrons in th
beam. Choosing the axial coordinatez to be the independen
variable, we denote the arrival time of thej th electron atz by
t j (z), and the corresponding transverse position relative
the wiggler axis byrW j (z). Ignoring space charge effects, th
radiation electric field«̄ is determined by the wave equatio
in mks units,

S ¹22
1

c2

]2

]t2D «W 5m0

]JWT

]t
, ~2.6!

where

JWT5(
j 51

N

e~yW'! jd
~2!@rW2rW j~z!#d@ t2t j~z!#

1

c
. ~2.7!

We introduce the slowly varying envelope functio
E(rW,z,t) by

«W 5
1

&
Eeik0z2 iv0tê11c.c. ~2.8!

The wave equation is simplified by using the paraxial a
proximation,

]2

]z22
1

c2

]2

]t2 >2ik0S ]

]z
1

1

c

]

]t D , ~2.9a!

and the resonant approximation,
The

r-

to

-

]JWT

]t
>2 iv0JWT , ~2.9b!

and we obtain

S ]

]z
1

1

c

]

]t
1

1

2ik0
¹T

2DE

5
m0e2cAw

2m (
j 51

N
1

g j~z!
e2 i z j ~z!d~2!

„rW2rW j~z!…

3d„t2t j~z!…
1

c
, ~2.10!

where we have introduced the ponderomotive phase

z j[~k01kw!z2v0t j~z! ~2.11!

of the j th electron, and¹T
2 is the transverse Laplacian.

The pendulum equations describing the motion of
electrons are derived as follows. Differentiating Eq.~2.11!
with respect toz yields

dz j

dz
5kwS 12

g0
2

g j
2~z!

D , ~2.12!

and the energy change is given by

dg j

dz
5

e

mc3 yW•«W 5
2e2Aw

2m2c3g j~z!
@E„z,t j~z!…ei z j ~z!

1E* „z,t j~z!…e2 i z j ~z!#. ~2.13!

The coupled motion of the electrons and the radiation field
described by Eqs.~2.10!–~2.13!.

III. ONE-DIMENSIONAL APPROXIMATION

In the one-dimensional approximation the sources
charged sheets of infinite transverse extent, with charge
unit areaen08 . The sheets are labeledj 51, . . . ,N, and the
energyg j is associated with an areaS51/n08 of the j th sheet.
It is convenient to utilize the dimensionless variables@5#,

t5kwz, ~3.1!

z5~k01kw!z2v0t52k0cS t2
z

v0
D . ~3.2!

It is worth noting that

z2t52k0cS t2
z

cD ~3.3!

is the phase of a wave propagating in free space. The o
dimensional FEL equations are

dz j~t!

dt
512

g0
2

g j
2~t!

, ~3.4!
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dg j~t!

dt
52

d2

g j~t!
@E„t,z j~t!…ei z j ~t!1E* „t,z j~t!…e2 i z j ~t!#,

~3.5!

S ]

]t
1

]

]z DE~t,z!5d1k0(
j 51

N
e2 i z j ~t!

g j~t!
d„z2z j~t!…,

~3.6!

with

d15
n08m0e2cAw

2mkw
, ~3.7!

d25
e2Aw

2m2c3kw
. ~3.8!

In deriving Eq. ~3.6! from Eq. ~2.10!, a local average ha
been carried out over the transverse coordinates. Also,
transverse Laplacian has been dropped, corresponding t
noring diffraction.

Energy conservation is derived by multiplying Eq.~3.6!
by E* (t,z) and adding the result to its complex conjugat

S ]

]t
1

]

]z D uE~t,z!u25d1k0(
j 51

N
1

g j~t!
@E„t,z j~t!…ei z j ~t!

1E* „t,z j~t!…e2 i z j ~t!#d„z2z j~t!….

~3.9!

Integrating Eq.~3.9! over z, and using Eq.~3.5!, we derive

(
j 51

N
dg j~t!

dt
52

d2

d1k0

d

dt E uE~t,z!u2dz. ~3.10!

Since

d2

d1
5

«0

n08mc2 , ~3.11!

Eq. ~3.10! implies

n08mc2(
j 51

N

g j~t!1E «0uE~t,z!u2
dz

k0
5const, ~3.12!

which is the expression of energy conservation.
Insight into the one-dimensional approximation is o

tained by considering the spontaneous radiation. In this c
the paraxial wave equation~3.6! is simplified by setting
z j (t)5z j (0) andg j (t)5g j (0)5g0 on the right-hand side
The solution of the resulting equation is

E~t,z!5
d1k0

g0
(
j 51

N

e2 i z j ~0!S„t,z2z j~0!…, ~3.13!

where

S„t,z2z j~0!…5H 1,
1
2 ,

0

0,z2z j~0!,t
z5z j~0!

otherwise.
~3.14!
he
ig-

-
se

The electric field is discontinuous at the position of t
source,z5z j (0), and itsvalue at the source position is th
average of the values just in front of and behind it~see Ap-
pendix A!.

From Eq. ~3.10!, the radiated energy lossDG~t! from a
bunch ofN electrons is given by

DG~t![(
j 51

N

@g j~t!2g0#52
d2

d1k0
E dzuE~t,z!u2.

~3.15!

Multiplying Eq. ~3.13! by its complex conjugate, we find

uE~t,z!u25
d1

2k0
2

g0
2 F (

j 51

N

uS„t,z2z j~0!…u2

1(
j Þ l

e2 i z j ~0!ei z l ~0!S„t,z2z j~0!…

3S* „t,z2z l~0!…G . ~3.16!

For the moment, let us suppose that the number of sou
in the interval (z0 ,z01dz0) is well approximated by

n1

k0
D~z0!dz0 , ~3.17a!

whereD(z0) is a smooth function with 0<D(z0)<1. The
quantityn1 is the maximum line density, locally averaged
eliminate the high frequency shot noise.

N5E n1

k0
D~z0!dz0 . ~3.17b!

Using the distributionD(z0), the sums in Eq.~3.16! can be
approximated by integrals, and from Eq.~3.15! it follows
that

^DG~t!&52
d1d2k0

g0
2 Fn1

k0
E dzE dz0D~z0!uS~t,z2z0!u2

1S n1

k0
D 2E dzU E dz0D~z0!e2 i z0S~t,z2z0!U2G .

~3.18!

Utilizing the Fourier expansion,

S~t,z2z0!5E dq

2p
eiq~z2z0!E

0

t

dz8e2 iqz8, ~3.19!

and introducing the Fourier transform

D̃~k!5E dz0D~z0!e2 ikz0, ~3.20!

we reexpress Eq.~3.18! in the form
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^DG~t!&5
2d1d2k0

g0
2 FNE dq

2p

4 sin2~qt/2!

q2

1N2E dq

2p
UD̃~11q!

D̃~0!
U2

4 sin2~qt/2!

q2 G .

~3.21!

The first term on the right-hand side is the incoherent sp
taneous radiation, and the second term is the coherent s
taneous radiation. The integral overq in the first term can be
evaluated, and the incoherent energy loss is found to be

DG inc~t!52
Nd1d2k0t

g0
2 . ~3.22!

For point electrons, it is well known that in the forwar
direction forv'v0 the spontaneous radiated energy per u
solid angle, per unit frequency interval is given by@11#

dI~v!

dV
5

1

4p«0

e2k0
2K2

2p2ckw
2 g0

2

sin2@pNw~v/v021!#

~v/v021!2 .

~3.23!

UsingK5eAw /mc, and the definitions ofd1 andd2 given in
Eqs.~3.7! and ~3.8!, we find

N

mc2

dI~v!

dV

l0
2

S
dv5

Nd1d2k0

g0
2

4 sin2~qt/2!

2pq2 dq,

~3.24!

where l052p/k0 is the resonant radiation wavelength,S
51/n08 , and q5(v2v0)/v0 is the frequency detuning
From Eqs.~3.24! and ~3.21!, it follows that the radiated en
ergy lossDg~t!, computed within the one-dimensional a
proximation, corresponds to the spontaneous radiation e
ted by point electrons into the solid angle@11,12#

DV5l0
2/S. ~3.25!

To conclude this section, let us review the conditio
@5,10,12# for the validity of the one-dimensional approxim
tion. Consider a long wiggler in which there is exponent
gain of the radiation field. We denote the gain length~e-
folding length! of the electric field byLG , and suppose the
electron beam to have a circular cross section of areaSe .
Diffraction will have a negligible effect on the gain if th
Rayleigh range corresponding to the electron beam cross
tion is greater than or on the order of the gain length, i.e

Se

l0
*LG . ~3.26!

On the other hand, when the Rayleigh range is short c
pared to the gain length, diffraction will reduce the gain b
low that given by the one-dimensional approximation.

When the Rayleigh range is long compared to the g
length, there is not communication between all parts of
electron beam cross section, and consequently, the ou
radiation will be comprised of many transverse modes@5#.
For a parallel electron beam, the one-dimensional appr
-
on-

it

it-

s

l

ec-

-
-

n
e
ut

i-

mation provides a good description when the gain is
reduced by diffraction and there is only one transverse mo
i.e., when the Rayleigh range is approximately equal to
gain length@5#,

Se

l0
'LG . ~3.27!

It is worth noting that the condition, Eq.~3.27!, for the
validity of the one-dimensional approximation can be rew
ten in the form

l0
2

Se
'

l0

LG
. ~3.28!

Equation~3.28! has the physical interpretation that the d
fraction angle corresponding to the electron beam transv
dimension is approximately equal to the angleAl0 /LG char-
acteristic of radiation from a section of undulator of exte
equal to one gain length.

IV. LINEAR REGIME

There is an important regime before saturation in wh
the FEL equations can be linearized. We write@8#

z j~t!5z j~0!1 ż j~0!t1dz j~t!, ~4.1!

where the dot indicates differentiation with respect tot. We
consider an initially monoenergetic electron beam, sog j (0)
5g0 for all j. Hence, it follows from Eq.~3.4! that ż j (0)
50 for all j. Whenug j (t)2g0u!g0 , Eq. ~3.4! becomes

ż j~t!>2S g j~t!2g0

g0
D ~4.2!

and

z̈ j~t!5dz̈ j~t!>
2

g0
ġ j~t!. ~4.3!

Using Eq.~3.5! in Eq. ~4.3! yields @8#

dz j~t!>2
2d2

g0
2 E

0

t

dt9~t2t9!@E„t9,z j~0!…ei z j ~0!

1E* „t9,z j~0!…e2 i z j ~0!#, ~4.4!

where we have kept only terms linear inE.
We approximate the paraxial wave equation~3.6!, by the

linear equation

S ]

]t
1

]

]z DE~t,z!5
d1k0

g0
(
j 51

N

e2 i z j ~0!@12 idz j~t!#

3d„z2z j~0!…. ~4.5!

Differentiating this equation twice with respect tot ~holding
z fixed! and using Eq.~4.4! for dz j (t) leads to
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]2

]t2 S ]

]t
1

]

]z DE~t,z!

5 ia
k0

n1
(
j 51

N

@E„t,z j~0!…1E* „t,z j~0!…e22i z j ~0!#

3d„z2z j~0!…. ~4.6!

In Eq. ~4.6!, the quantitya is defined by

a5~2r!35
2n1d1d2

g0
3 , ~4.7!

wherer is the Pierce parameter@9#, andn1 is the maximum
of the line density ~number of charged sheets per un
length!, computed by carrying out a local average to elim
nate the high frequency shot noise. Note thata depends only
on the number of electrons per unit volumen0 ,

n05n1n08 . ~4.8!

We wish to determine the coherent growth of the slow
varying amplitudeE, defined in Eq.~2.8!. For this purpose,
we can neglect the second term on the right-hand side of
~4.6!, which is proportional toE* . ~TheE* term is discussed
in Appendix B.! Therefore we shall consider the equation

]2

]t2 S ]

]t
1

]

]z DE~t,z!5 ia
k0

n1
(
j 51

N

E„t,z j~0!…d„z2z j~0!….

~4.9!

The electric field is discontinuous at the positions of t
charged sheets,z5z j (t)>z j (0), so Eq. ~4.9! must be
supplemented by~see Appendix A!

E„t,z j~0!…5 1
2 @E„t,z j~0!1…1E„t,z j~0!2…#.

~4.10!

To solve Eq.~4.6!, we apply the Laplace transform

F~s,z!5E
0

`

dt e2stE~t,z!, ~4.11!

and derive

]

]z
F~s,z!1sF~s,z!

2
2s2

s2 (
j 51

N

F„s,z j~0!…d„z2z j~0!…5H~s,z!, ~4.12!

where

s25
ia

2

k0

n1
~4.13!

and

H~s,z!5E~0,z!1
1

s F S ]

]t
1

]

]z DE~t,z!G
t50

. ~4.14!
-

q.

DefiningE0(z)5E(0,z), and using Eq.~3.6!, we rewrite Eq.
~4.14! in the form

H~s,z!5E0~z!1
d1k0

g0s (
j 51

N

e2 i z j ~0!d„z2z j~0!….

~4.15!

We write

F~s,z!5e2sz f ~s,z!, ~4.16!

and insert this expression in Eq.~4.12! to obtain

]

]z
f ~s,z!5

2s2

s2 (
j 51

N

f „s,z j~0!…d„z2z j~0!…1eszH~s,z!.

~4.17!

We specify the initial phases of the charged sheets,

2`,z1~0!,z2~0!,¯,zN~0!,`, ~4.18!

and adopt the conventionz0(0)52` andzN11(0)5`. We
require f (s,z)→0 asz→2`.

Equation~4.17! implies

f „s,z j~0!1…2 f „s,z j~0!2…

5
2s2

s2 f „s,z j~0!…1
d1k0

g0s
esz j ~0!e2 i z j ~0!,

~4.19!

and Eq.~4.10! implies

f „s,z j~0!…5 1
2 @ f „s,z j~0!1…1 f „s,z j~0!2…#. ~4.20!

Using Eq.~4.20! on the right-hand side of Eq.~4.19! yields

f „s,z j~0!1…5S 11s2/s2

12s2/s2D f „s,z j~0!2…

1
d1k0

g0s
~12s2/s2!21esz j ~0!e2 i z j ~0!.

~4.21!

From Eq.~4.17!, we observe

f „s,z j~0!2…5 f „s,z j 21~0!1…1E
z j 21~0!

z j ~0!

dz8esz8E0~z8!.

~4.22!

With the initial condition

f „s,z0~0!1…50 ~4.23!

the recursion relations given in Eqs.~4.21! and~4.22! deter-
mine f „s,z j (0)1… for all j. Next, f (s,z) can be found for
arbitraryz by noting that forz j (0),z,z j 11(0):

f ~s,z!5 f „s,z j~0!1…1E
z j ~0!

z

dz8esz8E0~z8!. ~4.24!

From Eqs. ~4.21!–~4.24!, it follows that, for z j (0),z
,z j 11(0),
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f ~s,z!5(
l 51

j S 11s2/s2

12s2/s2D j 2 l 11E
z l 21~0!

z l ~0!

dz8esz8E0~z8!

1E
z j ~0!

z

dz8esz8E0~z8!1
d1k0

g0s

3(
l 51

j S 11s2/s2

12s2/s2D j 2 l

~12s2/s2!21esz j ~0!e2 i z j ~0!.

~4.25!

Using Eqs. ~4.25! and ~4.16!, the Laplace transform
F(s,z) of the slowly varying envelopeE(t,z) is found to be
given by

F~s,z!5E
2`

`

dz8u~z2z8!es~z82z!S 11s2/s2

12s2/s2D m~z,z8!

3E0~z8!1
d1k0

g0s (
j 51

N

e2z j ~0!u„z2z j~0!…

3es„z j ~0!2z…~12s2/s2!21S 11s2/s2

12s2/s2D m„z,z j ~0!1…

.

~4.26!

The step functionu(z2z8) is unity for z.z8 and vanishes
for z,z8. The integer valued functionm(z,z8) is equal to
the number of charged sheets betweenz8 andz.

The envelopeE(t,z) is determined by employing the in
verse Laplace transform,

E~t,z!5E
c2 i`

c1 i` ds

2p i
estF~s,z!, ~4.27!

where the contour of integration is to the right of all sing
larities of F(s,z). Inserting Eq.~4.26! into Eq. ~4.27! yields
the result

E~t,z!5E
2`

`

dz8g2~t,z,z8!E0~z8!

1
d1k0

g0
(
j 51

N

g1„t,z,z j~0!…e2 i z j ~0!, ~4.28!

with

g2~t,z,z8!5u~z2z8!E
c2 i`

c1 i` ds

2p i
es~t2z1z8!

3S 11s2/s2

12s2/s2D m~z,z8!

~4.29!

and
g1~t,z,z8!5u~z2z8!E
c2 i`

c1 i` ds

2p is
es~t2z1z8!

3~12s2/s2!21S 11s2/s2

12s2/s2D m~z,z81 !

.

~4.30!

The integrals in Eqs.~4.29! and ~4.30! vanish whent2z
1z8,0, since in this case the contour can be closed in
right half plane, which contains no singularities. It follow
that g1,2(t,z,z8) are nonvanishing only in the intervalz2t
,z8,z.

In Appendix C we briefly discuss the evaluation
g1(t,z,z8) as given in Eq.~4.30!.

V. APPROXIMATING ELECTRON BEAM BY
CONTINUUM FLUID

Let us now consider approximating the electron gain m
dium by a continuum fluid. We suppose that the number
charged sheets per unit lengthn1 increases toward infinity,
while the charge per unit areaen08 on each sheet decreas
toward zero, with the number of electrons per unit volumen0
held fixed:

n1→`,n08→0 with n1n085n0 fixed. ~5.1!

In this limit we assume that the number of charged sheet
the interval (z0 ,z01dz0) is given by

n1

k0
D~z0!dz0 , ~5.2!

whereD(z0) is a smooth function with 0<D(z0)<1.
The number of charged sheets betweenz8 and z has the

limiting behavior

m~z,z8!→
n1

k0
E

z8

z

dz0D~z0!. ~5.3!

The quantitya5(2r)3 defined in Eq.~4.7! depends only on
n0 , and hence remains constant, whiles2 defined in Eq.
~4.13! vanishes according to

s25
ia

2

k0

n1
. ~5.4!

It is now clear that

S 11s2/s2

12s2/s2D m~z,z8!

→S 11~ ia/2s2!~k0 /n1!

12~ ia/2s2!~k0 /n1! D
~n1 /k0!*

z8
z

dz0D~z0!

→expF ia

s2 E
z8

z

dz0D~z0!G . ~5.5!

The functionsg1 andg2 @Eqs.~4.29! and~4.30!# have the
limits

g1~t,z,z8!→ġ~t,z,z8! ~5.6!

and
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g2~t,z,z8!→g̈~t,z,z8!, ~5.7!

where the dots denote derivatives with respect tot of the
continuum Green functiong @2#, given by

g~t,z,z8!5u~z2z8!

3E
c2 i`

c1 i` ds

2p is2 es~t2z1z8!eia/s2*
z8
z

dz0D~z0!.

~5.8!

The continuum Green function satisfies the equation@2,5#

F ]2

]t2 S ]

]t
1

]

]z D2 iaD~z!Gg~t,z,z8!5d~t!d~z2z8!.

~5.9!

Taylor expanding the exponential functions in Eq.~5.8!,
and summing the contributions of the poles ats50 @10,13#,
one finds

ġ~t,z,z8!5S~t,z2z8!

3(
l 50

`

@ iaw~z,z8!# l
~t2z1z8!2l

~2l !!

~z2z8! l

l !

~5.10!

and

g̈~t,z,z8!5d~t2z1z8!1S~t,z2z8!

3(
l 51

`

@ iaw~z,z8!# l
~t2z1z8!2l 21

~2l 21!!

~z2z8! l

l !
,

~5.11!

where

w~z,z8!5
1

z2z8
E

z8

z

dz0D~z0!. ~5.12!

The functionS(t,z2z8) was defined in Eq.~3.14! during
our earlier discussion of spontaneous radiation.

The collective behavior in the FEL becomes appar
when we reexpress Eq.~5.8! in the equivalent form

g~t,z,z8!

5E
c2 i`

c1 i` dsest

2p i E
-`2 iQ

`2 iQ dq

2p

eiq~z2z8!

s31 iqs22 iaw~z,z8!
,

~5.13!

where the contour of theq integration is taken to lie below
the pole, assuring the integral vanishes whenz2z8,0.

We denote bys1 ,s2 ,s3 the three solutions of the cubi
equation

s31 iqs22 iaw~z,z8!50. ~5.14!

Interchanging the order of the integrations in Eq.~5.13!, we
evaluate thes integration in terms of the residues of the thr
poles, obtaining
t

g~t,z,z8!5E
2`2 iQ

`2 iQ dq

2p
eiq~z2z8!G„t,q;w~z,z8!…,

~5.15!

with

G„t,q;w~z,z8!…5
es1t

~s12s2!~s12s3!
1

es2t

~s22s1!~s22s3!

1
es3t

~s32s1!~s32s2!
. ~5.16!

Recall thats1 ,s2 ,s3 are functions ofq andw(z,z8), as de-
termined by the cubic equation~5.14!.

Equations~5.14!–~5.16! provide a generalization to th
bunched electron beam of the well known result for an u
bunched~coasting! electron beam, for whichw(z,z8)51.
For the coasting beam, it is a consequence of transla
invariance that the Green function has the formg(t,z
2z8), ands1 ,s2 ,s3 are independent ofz andz8. In this case
Eq. ~5.15! is a Fourier representation in the variablez2z8.
One generally letsm denote one of the cube roots ofi,

m5eip/6, ei5p/6, ei3p/2, ~5.17!

and expresses the solution of the cubic equation~5.14! in the
perturbation expansion:

s

2r
5m2

i

3 S q

2r D2
1

9m S q

2r D 2

1¯ . ~5.18!

The fastest growing mode@exp(s1t)# corresponds to

s1

2r
'
)

2 F12
1

9 S q

2r D 2G1 i F1

2
2

1

3 S q

2r D1
1

18 S q

2r D 2G .
~5.19!

Use of Eq.~5.19! in Eq. ~5.16! yields the widely used Gauss
ian approximation to the dependence ofG(t,q) on the de-
tuning q5(v2v0)/v0 . This approach is not so helpful in
the case of a bunched electron beam, and we base our a
sis in the next section on the power series representa
given in Eq.~5.10!.

VI. RADIATED ENERGY

For amplified spontaneous emission, we showed in
~4.28! that the electric field envelope can be expressed
@2,5#

E~t,z!5
d1k0

g0
(
j 51

N

e2 i z j ~0!g1„t,z,z j~0!…. ~6.1!

The corresponding radiated energy lossDG~t! from a bunch
of N electrons was found in Eq.~3.15! to be determined by

DG~t!52
d2

d1k0
E dzuE~t,z!u2. ~6.2!

The square of the magnitude of the envelope function
found by multiplying Eq.~6.1! by its complex conjugate:
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uE~t,z!u25
d1

2k0
2

g0
2 F (

j 51

N

ug1„t,z,z j~0!…u2

1(
j Þ l

e2 i z j ~0!ei z l ~0!g1„t,z,z j~0!…

3g1* „t,z,z l~0!…G . ~6.3!

Given the initial phases$z j (0)% of the electrons, Eqs
~6.2! and~6.3! can be used to calculate the radiated energy
one thinks of$z j (0)% as stochastic variables, the avera
radiated energy, its fluctuation, and other statistical prop
ties can be determined@14–16#. Here, we shall not analyz
the fluctuation and statistical properties of the radiation,
shall consider the average energy radiated by a bunc
electrons.

We suppose the average properties of the electron b
are adequately described by the distributionD(z0) intro-
duced in Eq.~5.2!. Also, we approximateg1(t,z,z8) by its
continuum limit ġ(t,z,z8), as discussed in Eq.~5.6!. The
function ġ(t,z,z8) will be evaluated using the power serie
expansion of Eq.~5.10!. The average radiated energy
given by

^DG~t!&52
d1d2k0

g0
2 Fn1

k0
E dzE dz0D~z0!uġ~t,z,z0!u2

1S n1

k0
D 2E dzU E dz0D~z0!e2 i z0ġ~t,z,z0!U2G .

~6.4!

For a short wiggler, this expression reduces to Eq.~3.18!
derived during our discussion of spontaneous radiation
Eq. ~6.4! the first term corresponds to incoherent SASE a
the second term to coherent SASE.

At this point it is useful to introduce the scaled variabl
employed by Bonifacio, Pellegrini, and Narducci@9#,

t̄52rt, z̄52rz, and z̄852rz8. ~6.5!

Here,r is the Pierce parameter defined in Eq.~4.7!. Let us
assume the electron bunch distribution has the form

D~z0 ;zB!5D~z0 /zB!5D~ z̄0 ; z̄B!, ~6.6!

wherezB parametrizes the bunch length,z̄052rz0 and z̄B
52rzB . From Eq.~5.12! it follows that

w~z,z8;zB!5
1

z2z8
E

z8

z

dz0D~z0 ;zB!5w~ z̄,z̄8; z̄B!.

~6.7!

Using a5(2r)3 @Eq. ~4.7!# and Eq.~6.7! in Eq. ~5.10!, we
can express the response function in terms of the scaled
ables,
If

r-

t
of

m

In
d

ri-

ġ~t,z,z8!5h~ t̄,z̄,z̄8; z̄B!

5S~ t̄,z̄2 z̄8!(
l 50

`

@ iw~ z̄,z̄8; z̄B!# l

3
~ t̄2 z̄1 z̄8!2l

~2l !!

~ z̄2 z̄8! l

l !
. ~6.8!

The expression@Eq. ~6.4!# for the average radiated energ
can also be rewritten using the scaled variables. We find

^DG&5
2d1d2k0

2rg0
2 F n1

2rk0
E dz̄E dz̄0D~ z̄0 ; z̄B!

3uh~ t̄,z̄,z̄0 ; z̄B!u21S n1

2rk0
D 2

3E dz̄U E dz̄0D~ z̄0 ; z̄B!e2 i z̄0/2rh~ t̄,z̄,z̄0 ; z̄B!U2G .
~6.9!

Let us express Eq.~6.9! in the following form:

^DG&5~DGg!FNegE dz̄ inc
G ~ t̄,z̄; z̄B!

1Neg
2 E dz̄Gcoh~ t̄,z̄; z̄B ,r!G . ~6.10!

Here,

DGg52
d1d2k0

2rg0
2 ~6.11!

is the energy lost by one electron in the first gain length
the wiggler, and

Neg5
n1

2rk0
~6.12!

is the~peak! number of electrons a radiation wave front sli
over in the time it takes an electron to travel one gain len
down the wiggler.

In Figs. 1 and 2, respectively, we plot the quantiti
G inc( t̄,z̄; z̄B) andGcoh( t̄,z̄; z̄B ,r). In these figures the scale
distance along the wiggler axis at which the energy loss
computed is taken to bet̄55. The bunch profile is chosen t
be the step function distribution:

D~ z̄0 ; z̄B!5H 1,
0,

0, z̄0, z̄B

otherwise,
~6.13!

with the scaled bunch lengthz̄B52. The Pierce parameter i
r5 1

40 .
When considering Figs. 1 and 2, one should recall t

radiation arrives att̄55 during a time interval characterize
by 0, z̄,7. The back of the electron bunch is located az̄

50 and the front atz̄52. Radiation in the interval 2, z̄
,7 has slipped out of the electron bunch, while that in
, z̄,2 is located within the bunch. Radiation nearz̄50 has
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not been amplified, since it has just been emitted and has
had time to slip through the bunch. Nearz̄57 the radiation
emitted by electrons at the front of the bunch immediat
after they entered the wiggler is found. This radiation is u
amplified, because it was emitted before the FEL action
produced a density modulation on the electron beam.

In Fig. 1 the integral overG inc with respect toz̄ is equal to
163, and in Fig. 2, the integral overGcoh with respect toz̄ is
equal to 0.45. It follows from Eq.~6.10! that in this case, the
coherent energy loss will be greater than the incoherent
whenNeg.360. Therefore coherent SASE is seen to be
portant for a short electron bunch with sharp ends. Suc
case was studied experimentally at the Sunshine facility@17#.

Our analysis of the incoherent SASE is similar to th
presented in Ref.@13#. The coherent SASE was not consi
ered in Ref.@13#, but has been recently considered by P
vella @18#, utilizing the frequency-domain equations of Re
@11#, which are related to the time-domain equations~3.4!–
~3.6! by Fourier transform.

VII. RADIATED FIELD FROM BUNCH MUCH SHORTER
THAN RADIATION WAVELENGTH

In Appendix B the linearized FEL equations are solv
retaining theE* term. TheE* term may be neglected for

FIG. 1. We plotG inc( t̄,z̄; z̄B) againstz̄, for t̄55 and z̄B52.
The integral under the curve is 163. The scaled quantities plo
are dimensionless.

FIG. 2. We plotGcoh( t̄,z̄; z̄B ,r) againstz̄, for t̄55, z̄B52, and
r5

1
40. The integral under the curve is 0.45. The scaled quanti

plotted are dimensionless.
ot

y
-
d

ss
-
a

t

-

long electron bunch, but must be retained when the elec
bunch length is comparable to or shorter than the radia
wavelength. As a specific example, in Appendix B we ha
determined the radiated field from an electron bunch wh
length is very short compared to the radiation waveleng
Here, we shall discuss this case in more detail.

As in Eq. ~4.18!, we take

2`[z0~0!,z1~0!,z2~0!,¯,zN~0!,zN11~0![`.
~7.1!

Since the bunch is very short compared to the radiat
wavelength, to good approximation allz j (0)>c and

e2 i z j ~0!>e2 ic ~ j 51, . . . ,N!. ~7.2!

Inside the electron bunch, it is shown in Eq.~B21! that for
z j (0),z,z j 11(0)<zN(0)

E~t,z!>
d1k0

g0
F j 1 j 2S iak0

n1
D 1

2
~t2z1c!2Ge2 ic.

~7.3!

In this casez>c. In front of the bunch, it is shown in Eq
~B22! that for zN(0),z,zN(0)1t

E~t,z!>
d1k0

g0
FN1N2S iak0

n1
D 1

2
~t2z1c!2Ge2 ic.

~7.4!

The field vanishes forz.zN(0)1t. At the position of the
j th charge,E„t,z j (0)… is determined by Eq.~A5! as the av-
erage of the field just in front of and just behind it. One fin

E„t,z j~0!…5
d1k0

2g0
H ~2 j 21!1@~ j 21!21 j 2#

3S iak0

n1
D 1

2
t2J e2 ic. ~7.5!

The ponderomotive phase shift of thej th source is found
by inserting Eq.~7.5! into Eq. ~4.4!, yielding (j 51, . . . ,N)

dz j~t!52~2 j 21!S ak0

n1
D 1

2
t2. ~7.6!

It is straightforward to verify that the field as given in Eq
~7.3!–~7.5! satisfies the partial differential equation

S ]

]t
1

]

]z DE~t,z!5
d1k0

g0
(
j 51

N

e2 ic@12 idz j~t!#

3d„z2z j~0!…. ~7.7!

In order to determine the correction to the radiated ene
from coherent spontaneous emission, it is necessary to
sider terms neglected in the linear approximation utilized
this paper. This problem will be considered in future wo
@19#.

VIII. CONCLUSIONS

For a given initial set of longitudinally discrete radiator
we have solved the linearized one-dimensional FEL eq

d

s
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tions to determine the evolution of the radiation field. As
previous studies of SASE@2–5,11#, the discreteness of th
radiators enters the initial conditions. A distinguishing fe
ture of the present work is that the discreteness of the ra
tors has also been retained in the determination of the
sponse functionsg1,2(t,z,z8). This has allowed us to
elucidate the common practice of approximating the elect
gain medium by a continuum fluid. We have been able
obtain the results of the continuum fluid approximation
carrying out the appropriate limit on explicit expressions
have derived for the response functions. In this paper
have treated the electrons as charge sheets, rather th
point particles. It is to be hoped that in the future, a thr
dimensional approach will be developed, taking into acco
the full discreteness of point electrons. Such work wo
extend the three-dimensional descriptions of SASE prese
in Refs.@4,5#.

In treating the collective instability in FELs, it is usual t
neglect theE* term in the evolution equation~4.6!. In Ap-
pendix B we have obtained the solution of Eq.~4.6! retaining
theE* term. Neglecting theE* term yields the correct lead
ing behavior when the electron bunch is long compared
the radiation wavelength and the Pierce parameterr is small.
In this case, the response functions@Eqs. ~4.29! and ~4.30!#
depend on the initial phases of the radiators only through
function m(z,z8), defined to be equal to the number of r
diators betweenz8 and z. On the other hand, when theE*
term is retained~Appendix B!; nonleading terms in the re
sponse functions@Eqs. ~B14! and ~B15!# are found which
exhibit a more complicated dependence on the initial pha
When the electron bunch has a length comparable to
shorter than the radiation wavelength, theE* term is impor-
tant. This will also be true for a longer bunch as saturation
approached, but of course in this case nonlinear effects m
be taken into account.

ACKNOWLEDGMENTS

The author is grateful to Robert Gluckstern for collabo
tion on the case of an electron bunch whose length is s
compared to the radiation wavelength. He also wishes
thank Li-Hua Yu for a helpful discussion. This work wa
performed under the auspices of the U.S. Department of
ergy under Contract No. DE-AC02-98CH10886.

APPENDIX A: PROOF OF EQ. „4.10…

We integrate the paraxial wave equation~3.6! over a
small interval aboutz5z j (t):

E
z j ~t!2«

z j ~t!1«

dzS ]

]t
1

]

]z DE~t,z!

5E
z j ~t!2«

z j ~t!1«

dz d1k0(
l 51

N
e2 i z l ~t!

g l~t!
d„z2z l~t!….

~A1!

Taking the limit«→0, we find

E„t,z j~t!1…2E„t,z j~t!2…5
d1k0

g j~t!
e2 i z j ~t!. ~A2!
-
ia-
e-

n
o

e
as

-
t

d
ed

to

e

s.
or

is
st

-
rt

to

n-

Now we multiply Eq. ~3.6! by E(t,z), and then integrate
over the same interval aboutz5z j (t):

E
z j ~t!2«

z j ~t!1«

dz E~t,z!S ]

]t
1

]

]z DE~t,z!

5E
z j ~t!2«

z j ~t!1«

dz d1k0(
l 51

N
e2 i z l ~t!

g l~t!
E~t,z!d„z2z l~t!….

~A3!

Taking the limit«→0, we obtain

1

2
@E2

„t,z j~t!1…2E2
„t,z j~t!2…#

5
d1k0

g j~t!
e2 i z j ~t!E„t,z j~t!…. ~A4!

Using Eq.~A2! in Eq. ~A4! yields the desired result:

E„t,z j~t!…5 1
2 @E„t,z j~t!1…1E„t,z j~t!2…#. ~A5!

In the case of rf accelerators, a relation of the type exhibi
in Eq. ~A5! has been called the ‘‘fundamental theorem
beam loading’’ by Wilson@20#.

APPENDIX B: DISCUSSION OF THE E* TERM

In discussing the dominant coherent growth in the FE
we have neglected the term proportional toE* on the right-
hand side of Eq.~4.6!. Let us briefly discuss the solutio
when theE* term is not dropped. In this case, Eq.~4.19! is
replaced by

f „s,z j~0!1…2 f „s,z j~0!2…

5
2s2

s2 @ f „s,z j~0!…1 f * „s,z j~0!…e22i z j ~0!#

1
d1k0

g0s
esz j ~0!e2 i z j ~0!. ~B1!

Equation~4.20! is unchanged:

f „s,z j~0!…5 1
2 @ f „s,z j~0!1…1 f „s,z j~0!2…#. ~B2!

Using Eq. ~B1!, its complex conjugate, and Eq.~B2!, we
derive

f „s,z j~0!1…5Bj~s! f „s,z j~0!2…

1
d1k0

g0s
esz j ~0!e2 i z j ~0!L~s!, ~B3!

and Eq.~4.22! is still valid,

f „s,z j~0!2…5 f „s,z j 21~0!1…1E
z j 21~0!

z j ~0!

dz8esz8E0~z8!.

~B4!

In Eq. ~B3! we have defined

Bj~s!5L~s!1G~s!e22i z j ~0!C, ~B5!



ll

s

-

he

f

e

ill

pa-
on-
ery
the

PRE 59 1181TRANSIENT ANALYSIS OF FREE-ELECTRON LASERS . . .
L~s!511
2s2

s2 , ~B6!

G~s!5
2s2

s2 , ~B7!

and the operatorC, which takes the complex conjugate of a
factors to its right. For example,

u1Cu2u35u1u2* u3* C, ~B8!

Cu1Cu2u35u1* u2u3 . ~B9!

As in Eq. ~4.18!, 2`[z0(0),z1(0),z2(0),¯,zN(0)
,zN11(0)[`.

With the initial condition, Eq.~4.23!,

f „s,z0~0!1…50, ~B10!

the recursion relations given in Eqs.~B3! and~B4! determine
f „s,z j (0)1… for all j. Then,f (s,z) can be found for arbitrary
z by noting that forz j (0),z,z j 11(0)

f ~s,z!5 f „s,z j~0!1…1E
z j ~0!

z

dz8esz8E0~z8!. ~B11!

From Eqs.~B3!, ~B4!, ~B10!, and ~B11!, we find for z j (0)
,z,z j 11(0)

f ~s,z!5(
l 51

j

Bj~s!Bj 21~s!¯Bl~s!E
z l 21~0!

z l ~0!

dz8esz8E0~z8!

1E
z j ~0!

z

dz8esz8E0~z8!

1
d1k0

g0s (
l 51

j 21

Bj~s!Bj 21~s!¯Bl 11~s!

3esz l ~0!e2 i z l ~0!L~s!1
d1k0

g0s
esz j ~0!e2 i z j ~0!L~s!.

~B12!

Note that since the operatorsBi(s) do not commute, the
order of the factors in Eq.~B12! is important. The operator
corresponding to larger phases appear to the left.

Equation~B12! can be simplified, by introducing the op
eratorb(s,z,z8) defined by

b~s,z,z8!5Bj~s!Bj 21~s!¯Bl~s!, ~B13!

where the product is over all factorsBi(s) corresponding to
phasesz i(0) lying betweenz8 andz, again with factors cor-
responding to larger phases appearing to the left. When t
are no sources betweenz8 and z, then b(s,z,z8) is unity.
Following steps analogous to those leading from Eq.~4.25!
to Eq. ~4.30!, we find
re

g1„t,z,z j~0!…5u„z2z j~0!…E
c2 i`

c1 i` ds

2p is

3es„t2z1z j ~0!…b„s,z,z j~0!1…L~s!

~B14!

and

g2~t,z,z8!5u~z2z8!E
c2 i`

c1 i` ds

2p i
es~t2z1z8!b~s,z,z8!.

~B15!

Recall that

Bj~s!511
iak0

n1s2 1
iak0

n1s2 e22i z j ~0!C ~B16a!

and

L~s!511
iak0

n1s2 . ~B16b!

From Eqs.~B13! and ~B16!, we see that in the continuum
limit, L(s)→1 and

b~s,z,z8!→exp1H ia

s2 E
z8

z

dz0D~z0!@11e22i z0C~z0!#J .

~B17!

The z-ordered exponential exp1( ) employed in Eq.~B17! is
defined such that factors depending on larger values oz
appear to the left. The operatorC(z0) takes the complex
conjugate of all factors appearing to its right.

Much work remains to explore the implications of th
solution of the linearized FEL equations retaining theE*
term, which we have presented in this Appendix. This w
be addressed in future@19#. The effect of theE* term can be
expected to be important when the bunch length is com
rable to or shorter than the radiation wavelength. Let us c
sider the very special case of a bunch whose length is v
short compared to the radiation wavelength. We suppose
length to be so short that in Eq.~B16a! we can use the
approximation

e22i z j ~0!>e22ic ~ j 51, . . . ,N!. ~B18!

We wish to determinef (s,z) from Eq.~B12!, in the absence
of an external field.

Using Eq.~B18!, it follows that for l 51, . . . ,j 21

Bj~s!Bj 21~s!¯Bl 11~s!L~s!e2 ic

>H 11@2~ j 2 l !21#
iak0

n1s2J e2 ic. ~B19!

Now, it follows from Eq.~B12! that for z j (0),z,z j 11(0)

f ~s,z!>
d1k0

g0s F j 1 j 2S iak0

n1s2 D Ge2 ic. ~B20!

The inverse Laplace transform is taken using Eqs.~4.27! and
~4.16!. Inside the bunch, forz j (0),z,z j 11(0)<zN(0)
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E~t,z!>
d1k0

g0
F j 1 j 2S iak0

n1
D 1

2
~t2z1c!2Ge2 ic.

~B21!

Ahead of the bunch, forzN(0),z,zN(0)1t

E~t,z!>
d1k0

g0
FN1N2S iak0

n1
D 1

2
~t2z1c!2Ge2 ic.

~B22!

For z.zN(0)1t, the field vanishes. At the position of th
j th charge,E„t,z j (0)… is determined by Eq.~A5! as the av-
erage of the field just in front of and just behind it.

Now let us briefly discuss the case of a bunch long co
pared to the radiation wavelength. The fundamental re
nance in the FEL corresponds to the electromagnetic~EM!
wave~frequencyv0 , wave numberk0! slipping ahead of the
electrons traveling at velocityy05v0 /(k01kw) by one ra-
diation wavelength 2p/k0 , as the electrons traverse one wi
gler period. TheE* term provides a resonant interaction b
tween the electron beam and a slow EM wave~frequency
v0 , wave numberk012kw! of opposite helicity to the fas
wave, which slips behind the electrons by one radiat
wavelength 2p/(k012kw) as the electrons traverse one wi
gler period. The slow wave is not present initially, and is n
radiated spontaneously. It is, however, eventually gener
by the interaction between the electron beam and the ra
tion. Once generated it can be amplified.

APPENDIX C: EVALUATION OF RESPONSE FUNCTION
g1„t,z,z8…

Let us consider the representation forg1(t,z,z8) given in
Eq. ~4.30!:

g1~t,z,z8!5u~z2z8!

3E
c2 i`

c1 i` ds

2p i
esx

s

s22s2 S s21s2

s22s2D m~z,z81 !

,

~C1!

where we introduce the notation

x5t2z1z8. ~C2!

For a long wiggler, i.e., 2rt@1, it is useful to follow Ref.
@10# and obtain an asymptotic approximation forg1 utilizing
the saddle point method. We supposet andz2z8 are large,
as ism(z,z81). We rewrite Eq.~C1! in the form

g1~t,z,z8!5u~z2z8!E
c2 i`

c1 i` ds

2p i

s

s22s2 ep~s!, ~C3!
-
o-

n

t
ed
ia-

where

p~s!5sx1m~z,z81 !lnS s21s2

s22s2D . ~C4!

The equation determining the saddle point isp8(s)50,
which can be written as

s42s45s0
3s, ~C5!

where

s0
35

4m~z,z81 !s2

x
. ~C6!

Treatings2 as a small parameter, we solve Eq.~C5! it-
eratively to find the locations5 ŝ of the saddle point, obtain
ing

ŝ5s01
s4

3s0
3 1¯ . ~C7!

Substituting Eq.~C10! into Eq. ~C7! yields

p~ ŝ!'
3

2
~4ms2!1/3x2/3F11

s4

9 S x

4ms2D 4/3G . ~C8!

In Eq. ~C8! we choose the cube root ofs2 to have a positive
real part, corresponding to coherent growth of the radiat
field. Defining

y5
k0

n1
m~z,z81 !, ~C9!

and using Eq.~4.13! in Eq. ~C8!, we obtain

p~ ŝ!'3reip/6~2x2y!1/3F11
eip/3

18~21/3! S rk0

n1
D 2S x

yD 4/3G
~C10!

and

g1~t,z,z8!}ep~ ŝ!. ~C11!

The first term in Eq.~C10! is the result obtained in the
continuum limit@10#. The second term is a correction resu
ing from the discreteness of the radiators. We note that, a
Eq. ~6.12!,

Neg5
n1

2rk0
~C12!

is the~peak! number of electrons a radiation wave front sli
over in the time it takes an electron to travel one gain len
down the wiggler. The effect of discreteness will be neg
gible when

Neg@1. ~C13!
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